If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+x=248
We move all terms to the left:
3x^2+x-(248)=0
a = 3; b = 1; c = -248;
Δ = b2-4ac
Δ = 12-4·3·(-248)
Δ = 2977
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{2977}}{2*3}=\frac{-1-\sqrt{2977}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{2977}}{2*3}=\frac{-1+\sqrt{2977}}{6} $
| 245=5r-8(4r-7) | | 1/2n+6=10 | | 242=5r-8(4r-7) | | 12/q=6/8 | | 47=6x-1 | | 38=5u+8(u-5) | | X=x(3/10) | | 5m^2-14=2m^2+13 | | n/1=5 | | -11x+101=-47-15x | | 2/3x-11/9=1/3x+7/9 | | -88=-7(7-n)-4 | | 4x^2-10=-50 | | 141=3(-8x-1) | | -16/m=4 | | 5x-4(4x+2)=-118 | | E=90-x | | 2x+8+5x-2=80 | | 5f-8=9f+36 | | 17-11p-13p=-9 | | -8(3v+3)=144 | | x-33=49 | | 10x-102=14x+50 | | 192=-4(-8+8r) | | 34x+3466-20=70(50x+75) | | 192=-4(-8+8r | | -1-2(7+6v)=-99 | | 6e+5=2e+33 | | -5×(-13÷12)-3z=4 | | 3v+7=13 | | x+2=x+-4 | | 1.5x-9=2.3 |